Asymptotic Theory of Cepstral Random Fields by Tucker
نویسندگان
چکیده
Random fields play a central role in the analysis of spatially correlated data and, as a result, have a significant impact on a broad array of scientific applications. This paper studies the cepstral random field model, providing recursive formulas that connect the spatial cepstral coefficients to an equivalent moving-average random field, which facilitates easy computation of the autocovariance matrix. We also provide a comprehensive treatment of the asymptotic theory for two-dimensional random field models: we establish asymptotic results for Bayesian, maximum likelihood and quasi-maximum likelihood estimation of random field parameters and regression parameters. The theoretical results are presented generally and are of independent interest, pertaining to a wide class of random field models. The results for the cepstral model facilitate model-building: because the cepstral coefficients are unconstrained in practice, numerical optimization is greatly simplified, and we are always guaranteed a positive definite covariance matrix. We show that inference for individual coefficients is possible, and one can refine models in a disciplined manner. Our results are illustrated through simulation and the analysis of straw yield data in an agricultural field experiment.
منابع مشابه
Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملAsymptotic Expansions for the Laplace Approximations of Sums of Banach Space-valued Random Variables
Let Xi, i ∈ N, be i.i.d. B-valued random variables, where B is a real separable Banach space. Let Φ be a smooth enough mapping from B intoR. An asymptotic evaluation of Zn = E(exp(nΦ( ∑n i=1 Xi/n))), up to a factor (1 + o(1)), has been gotten in Bolthausen [Probab. Theory Related Fields 72 (1986) 305–318] and Kusuoka and Liang [Probab. Theory Related Fields 116 (2000) 221–238]. In this paper, a...
متن کاملOn Spatial Processes and Asymptotic Inference under Near-Epoch Dependence.
The development of a general inferential theory for nonlinear models with cross-sectionally or spatially dependent data has been hampered by a lack of appropriate limit theorems. To facilitate a general asymptotic inference theory relevant to economic applications, this paper first extends the notion of near-epoch dependent (NED) processes used in the time series literature to random fields. Th...
متن کاملAsymptotic Theory for Linear-Chain Conditional Random Fields
In this theoretical paper we develop an asymptotic theory for Linear-Chain Conditional Random Fields (L-CRFs) and apply it to derive conditions under which the Maximum Likelihood Estimates (MLEs) of the model weights are strongly consistent. We first define L-CRFs for infinite sequences and analyze some of their basic properties. Then we establish conditions under which ergodicity of the observ...
متن کاملCentral Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields.
Over the last decades, spatial-interaction models have been increasingly used in economics. However, the development of a sufficiently general asymptotic theory for nonlinear spatial models has been hampered by a lack of relevant central limit theorems (CLTs), uniform laws of large numbers (ULLNs) and pointwise laws of large numbers (LLNs). These limit theorems form the essential building block...
متن کامل